传统的雷达显示系统是基于Windows的面临许多问题,随着计算机、软件和网络技术的不断发展,使得新一代的雷达终端系统的软件化和网络化实现成为可能。Linux是免费的、开源的、网络化的操作系统。其内核是独立和高度可配置的。Linux的网络功能和安全性要优于Windows。 预处理机的主要功能是:雷达视频的采集、压缩和传输,接收二次信息和操控信息并存储所有信息。主显机功能:压缩视频的接收、解压、显示,接收二次信息并显示,人机操控操作,将二次信息和操控信息发送到网络上。网显机类似于主显机,但没有操控功能。预处理机完成数据的采集、压缩和传输。基于PCI总线的雷达视频采集卡是系统中惟一的硬件实现部分,也是必不可少的,它将采集的数据传给计算机。 当雷达采样率很高时,网络传输前不进行压缩处理,带宽是不够的。基于帧的压缩技术,不适合对雷达视频具有实时要求的场合,因为会引入一个固定延时。而一维小波压缩可以做到高效压缩和实时要求的折衷。小波压缩的思想是将一维数字序列分为粗糙尺度和细节两部分,各占一半存储空间,这个过程可以一直递归下去;因为回波信号比较平滑,细节部分主要是噪声,所以只保留粗糙尺度部分, 系统中,一次视频采用多播方式;主显示机与预处理机之间的操控命令连接通道由于需要可靠的连接且通信量相对较少,所以采用了面向连接的TCP协议。主显机主要由各种显示模块和网络模块组成。显示模块包括PPI和AR模块。其中以PPI显示技术最为复杂,显示模块和网络模块如何整合是系统效率高低的关键。显示过程中一个很重要的步骤是进行坐标的转换。数据采集卡得到的雷达视频数据以距离方位为坐标,但通用显卡的内存则以行列为坐标,故极坐标要转化为x-y直角坐标。 由于接收网络组播的视频帧包是一种阻塞操作,而GUI程序的主线程不能有阻塞操作,所以网络接收部分应该放在子线程或子进程中。系统首先选择了子线程方式,试验表明在这种方式下显示部分不均匀。这是因为CPU调度的对象是进程,进程内的线程同时竞争CPU分给该进程的时间片,于是就会出现在某段时间内主线程一直占用CPU,另一段时间网络部分的子线程占用CPU。网络接收虽然不会丢包,但是接收速度的不均匀引起了显示的不均匀。系统又试验了子进程方式,发现显示效果有所改观,但是改进不大。 系统中选用具有超线程功能的Intel Pentium 4处理器,如果操作系统能够支持SMP,那么一个CPU相当于两个CPU,两个进程就可以并行处理。实际上,Linux2.4版本的内核就支持SMP了。系统选择的内核版本是2.6.8,手工编译内核,选用SMP功能。用新的内核运行同样的程序,显示很平滑,最快显示速度达到一圈2s以内,性能得到了明显提高。Linux内核的灵活定制特性在系统中起关键作用。
|